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The data available for geostatistical modeling can often be divided into (1) direct measurements of the 
primary variable being predicted, and (2) secondary data sources such as geological features and 
geophysical measurements that are of different variables at different scale.  The secondary data are 
calibrated to the variable being predicted.  Often, there is no explicit multivariate distribution of the 
primary variables with all secondary data; thus, there is a need to directly integrate prior global 
information, sparse primary data and calibrated secondary data. This paper presents methodologies to 
integrate conditional probabilities from multiple data sources for categorical variable estimation.  
Consider the unknown data event A given information sources B and C.  The ultimate goal could be 
summarized as the estimation of P(A|B,C) over all grids and then P(A|B,C) is used for simulation of event 
A.  Each conditional probabilities, P(A|B) and P(A|C), can be evaluated instead of jointly modeling of 
P(A|B,C).  These two conditional probabilities are partially correlated each other since data source B and 
C are informative (correlated) to the unknown data event A.  Plausible combining method must consider 
data redundancy inherent among data sources.  A new combining algorithm of P(A|B) and P(A|C) is 
developed and evaluated by synthetic examples.  Comparing with traditional integration ways, test example 
shows that the proposed method has better performance than traditional combining methods and 
considering data redundancy is critical to final estimation results 

Introduction 

Subsurface models of lithology are often poorly constrained due to lack of dense well control.  Although 
limited in vertical resolution, exhaustive secondary data usually provide valuable information regarding the 
lateral variations of lithology.  Co-kriging approach relies on a generalized linear regression model, which 
is inadequate when combining lithology indicator variables and continuous secondary attributes.  Instead, a 
new method uses to combine each calibrated conditional probability to construct a posteriori distribution of 
lithology at each location.  The posterior distribution combines a local prior distribution obtained by 
indicator kriging or training images with a function representing the secondary likelihood of the lithofacies.  

Our objective is to construct lithologic subsurface models by combining observations of lithology in wells 
with secondary attributes data, assumed to be related to lithology.  To simplify our discussion, we consider 
only two lithoclasses and refer to them as sand and shale.  We define a binary lithology indicator variable: 

1,  if location   sand
( )

2,  if location   shale
k

∈⎧
= ⎨ ∈⎩

u
u

u  

A sand/shale indicator samples are specified by the vector 1( ,..., )ni i i=
G

, where random variable i has 
either 1 or 2 at sampled location and n is the number of neighborhood indicator samples.  Associated with 
each location, there is a secondary attribute data yj, j = 1,…,m which is assumed to provide indirect and 
imperfect information about the local lithology.  For the entire model secondary data vector is denoted 
by 1( ( ),..., ( ))my y y= u uG

, u ∈ area and m is the number of secondary data variables. 

Incorporating of several secondary variables requires identification of the local posterior distributions at 
estimation location u, 1( ( ) | , ( ),..., ( ))mP k i y yu u u

G
 involving the secondary data vector (y1(u),…,ym(u)) 
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at co-location u.  Only co-located secondary variables are retained to be used as secondary information and 
this is equivalent to Markov-type screening assumption.  Traditionally, some form of co-kriging ha been 
used to estimate these distributions.  Unfortunately, the linear data combination underlying the co-kriging 
technique is inadequate when mixing discrete and continuous variables, such as lithology indicator data and 
seismic attributes.  We decomposed the required posterior distribution at each location through Bayesian 
relations: 

1

1
1

* ( ( ) | , ( ),..., ( ))

( )    ( ( ) | ) ( ( ),..., ( ) | ( ), )
( , ( ),..., ( ))

m

m
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=

=
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The second term 1( ( ),..., ( ) | ( ), )mP y y k iu u u
G

 can be summarized as 1( ( ),..., ( ) | ( ))mP y y ku u u  
which explains the estimated lithology at estimation location u mostly influences the co-located secondary 
attributes.  It is fairly reasonable summation that secondary attributes at location u is closely related to 
lithology type at location u rather than related to surrounding i

G
. 

Thus, the posterior distribution follows as: 

1* ( ( ) | ) ( ( ),..., ( ) | ( ))mP P k i P y y k C= u u u u
G

 

where, 1( ) / ( , ( ),..., ( ))mC P i P i y u y u=
G G

 

Unknown constant term C is independent of lithology estimation k(u) and is therefore not required.  The 
first term ( ( ) | )P k iu

G
 is called a prior distribution of k(u) which reflects the spatial interdependence 

between the lithologic variables and can be calculated using either indicator kriging or training image.  The 
second term 1( ( ),..., ( ) | ( ))mP y y ku u u  is referred to secondary likelihood distribution.  Specifically, 
P(y1(u),…,ym(u)|k(u)=1) and P(y1(u),…,ym(u)|k(u)=2) gives the likelihood of observing sand and shale 
respectively at location u, where the measured secondary attributes is equal to (y1(u),…,ym(u)).   

Methodology 

Provided that secondary variable (y1(u),…,ym(u)) follows jointly Gaussian distribution, this likelihood term 
can directly calculated from the lithoclass-condtional normal distributions: 

1
1 1 1 1

1( ( ),..., ( ) | ( ) 1) exp ( ( ) ) ( ( ) )
2

t
m k k kP y y k −

= = =
⎛ ⎞= = − − −⎜ ⎟
⎝ ⎠

∑u u u Y u μ Y u μ
 

and 

1
1 2 2 2

1( ( ),..., ( ) | ( ) 2) exp ( ( ) ) ( ( ) )
2

t
m k k kP y y k −

= = =
⎛ ⎞= = − − −⎜ ⎟
⎝ ⎠

∑u u u Y u μ Y u μ
 

Y(u) vector is secondary attributes vector (y1(u),…,ym(u)) at estimation location u.  Σk=1 and μk=1 are 
covariance and mean vector of secondary variables where sampled as k=1.  As a same way, Σk=2 and μk=2 
are covariance and mean vector of secondary variables where sampled as k=2.  Likelihood probability can 
be calculated under joint Gaussian distribution, however, secondary variables rarely show jointly Gaussian 
distribution in practice.  Thus, we viewed the estimation of the likelihood P(y1(u),…,ym(u)|k(u)) as the 
combination of each conditional probability through the integration model: 

Likelihood = Φ[P(y1(u)|k(u)),…, P(ym(u)|k(u))] 

where Φ(•) is the integration model. 

In this section, we introduced the traditional integration model and proposed a new model to combine 
conditional probability. 
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Permanence of Ratios (PR-model) 

This method is based on the fact that ratios of information increments is more stable than the increments 
themselves.  To simplify the notations, we assumed two secondary attributes at estimation location u 
simply as S1 and S2, and lithology as k at location u.   

Previous notation Changed notation 

y1(u) and y2(u) S1 and S2 

k(u) k 

Permanence of Ratios (noted as PR from here) gives us the following: 

1 2

1 2

1 2

1 2

1 ( ) 1 ( | ) 1 ( | ), ,
( ) ( | ) ( | )

1 ( | , )
( | , )

P k P k S P k Sa b c
P k P k S P k S

P k S Sx
P k S S

− − −
= = =

−
=

 
,where P(k) is a global proportions and P(k|S1) and P(k|S2) are litho-class conditional probability.  One 
simple way to calculate conditional probability is for using histogram smoothing technique.  Below figure 
illustrates how to obtain litho-class conditional probability.  Sample histogram of S1 is first built for the 
lithology k and smoothed histogram is estimated based on sample histogram.  For a specific location, 
probability of lithology k given S1 attribute at the location is obtained using smoothed line. 

 
The PR amounts to assume 

x c
b a
�

 
which is interpreted as that information incremental contribution of data S2 to knowledge of lithology k is 
the same after or before knowing S1 (see the details in reference [4]).  PR-model provides the conditional 
probability of lithology k given all secondary data such as: 
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1 2
1 2

1 2

1 2

1 2 1 2

1 ( )
1 ( )( | , )

1 1 ( ) 1 ( | ) 1 ( | )
( ) ( | ) ( | )

( | ) ( | ) ( )                              
( | ) ( | ) ( ) ( | ) ( | ) ( )

PR

P k
P kP k S S

x P k P k S P k S
P k P k S P k S

P S k P S k P k
P S k P S k P k P S k P S k P k

−

= =
+ ⎛ ⎞⎛ ⎞− − −+ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

=
+  

Interestingly, estimated probability PPR(k|S1,S2) using permanence of ratio is exactly same as the estimated 
probability using conditional independence assumption, referred to PCI(k|S1,S2).  This equivalence of PR 
and CI is verified in Appendix A.  

Tau-model 

Tau-model is proposed to consider the dependence among data source.  Tau-model introduce some S1-
dependence is to set the prior-to-S1 contribution c/a to a power τ, which depends on both S1 and S2: 

1 2( , )S Sx c
b a

τ
⎛ ⎞
⎜ ⎟
⎝ ⎠

�
 

where τ weight control the contribution of S2 to S1.  Tau-model can be viewed as a permanence of ratios 
model that imposes τ exponent on each conditional probability. 

cx b
a

τ
⎛ ⎞
⎜ ⎟
⎝ ⎠

�
 

where, 1 2 1 2( | , ) / ( | , )x P k S S P k S S=  

The conditional probability P(k|S1,S2) by Tau-model is following, 

1 2

1 22

1 21 2

1

1( | , )
1

1 1 1
( | ) ( | ) ( )( | ) 11 ( | ) ( | ) ( )( | ) ( | )1

( )( | )
( )

TauP k S S
x

P k S P k S P kc P k Sb P k S P k S P ka P k S P k S
P kP k S
P k

τ τ τ τ

τ τ

=
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= = =
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⎜ ⎟
⎜ ⎟
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1 1
( | ) ( | ) ( ) ( | ) ( ) / ( ) ( ) ( | ) ( ) / ( )1 1
( | ) ( | ) ( ) ( | ) ( ) / ( ) ( ) ( | ) ( ) / ( )

P k S P k S P k P S k P k P S P k P S k P k P S
P k S P k S P k P S k P k P S P k P S k P k P S

τ τ τ τ τ τ

τ τ τ τ τ τ
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1 2

1 2 1 2

( ) ( | ) ( | )
( ) ( | ) ( | ) ( ) ( | ) ( | )

P k P S k P S k
P k P S k P S k P k P S k P S k

τ

τ τ=
+  

This probability induced by Tau-model is exactly same as PPR(k|S1,S2) unless τ weight is considered (τ = 
1). 
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1 2
1 2

1 2 1 2

1 2
1 2

1 2 1 2

( | ) ( | ) ( )( | , )
( | ) ( | ) ( ) ( | ) ( | ) ( )

( | ) ( | ) ( )( | , )
( | ) ( | ) ( ) ( | ) ( | ) ( )

PR

Tau

P S k P S k P kP k S S
P S k P S k P k P S k P S k P k

P S k P S k P kP k S S
P S k P S k P k P S k P S k P k

τ

τ τ

=
+

=
+  

This result implies that data inter-dependency effect can be considered as assigning exponential weights 
onto each conditional probability.  In tau-model, τ weights are independent of lithology type k which 
indicates 2( | )P S k  and 2( | )P S k  has same τ weight such as 2( | )P S k τ  and 2( | )P S k τ .  Simple way to 
find appropriate τ weight is to use linear correlation of secondary S1 and S2, which estimates τ as, 

τ = 1 – ρ(S1,S2) 

S2 information is completely ignored if ρ(S1,S2)=1.0 (τ=0 → P(S2|k)τ=1), which indicates full dependence 
between S1 and S2.  Thus, PTau(k|S1,S2) becomes P(k|S1) and there is no information update through 
incorporating S2.  S2 information is completely utilized if ρ(S1,S2)=0 (τ=1 → P(S2|k)τ= P(S2|k)), which 
means full independence between S1 and S2.  In this case, S2 plays as completely new information and 
Ptau(k| S1,S2) reverts to PPR(k|S1,S2).  

Lamda-model 

A new method that combines conditional probability is proposed and referred as lamda-model.  Lamda-
model incorporates data dependence weights, say, (λ1, λ2): 

1 2
1 2 1 2( , | ) ( | ) ( | )P S S k P S k P S kλ λ�  

Above decomposition with λ weights produces the below relations, 

1 2

1 2 1 2

1 2
lamda 1 2

1 2 1 2

( | ) ( | ) ( )( | , )
( | ) ( | ) ( ) ( | ) ( | ) ( )

P S k P S k P kP k S S
P S k P S k P k P S k P S k P k

λ λ

λ λ λ λ=
+  

Or (λ1, λ2) weights can be decided to be dependent on lithology type k, 1 2( , )k kλ λ  then, 

1 2

1 2 1 2

1 2
lamda 1 2

1 2 1 2

( | ) ( | ) ( )( | , )
( | ) ( | ) ( ) ( | ) ( | ) ( )

k k

k k k k

P S k P S k P kP k S S
P S k P S k P k P S k P S k P k

λ λ

λ λ λ λ
=

+  
PR-model, Tau-model and Lamda-model have similar forms except how to consider data redundancy 
among data sources.  See the below table. 

Model Probabilistic form of combining probability 

PR-model 1 2
1 2

1 2 1 2

( | ) ( | ) ( )( | , )
( | ) ( | ) ( ) ( | ) ( | ) ( )PR

P S k P S k P kP k S S
P S k P S k P k P S k P S k P k

=
+  

Tau-model 1 2
1 2

1 2 1 2

( | ) ( | ) ( )( | , )
( | ) ( | ) ( ) ( | ) ( | ) ( )Tau

P S k P S k P kP k S S
P S k P S k P k P S k P S k P k

τ

τ τ=
+  

Lamda-model 
1 2

1 2 1 2

1 2
lamda 1 2

1 2 1 2

( | ) ( | ) ( )( | , )
( | ) ( | ) ( ) ( | ) ( | ) ( )

k k

k k k k

P S k P S k P kP k S S
P S k P S k P k P S k P S k P k

λ λ

λ λ λ λ
=

+  
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In lamda-model, data dependence weights, (λ1,λ2) or 1 2( , )k kλ λ measures redundancy inherent among the 
secondary data sources S1 and S2.  Choosing appropriate redundancy weights is an essential part since 
redundancy measures, (λ1,λ2), have a great impact on the secondary likelihood distribution and 
consequently the final updated probability.   

Method 1 

Let us consider two secondary variable, S1 and S2, and two lithology k=1(sand) and =2(shale).  In the 
method 1, redundancy weights 1 2( , )k kλ λ  are estimated by total probability theorem such as, 

2

1 2 1 2
1

( , | ) ( ) ( , )
k

P S S k P k P S S
=

=∑
 

1 2

2

1 2 1 2
1

( | ) ( | ) ( ) ( , )
k k

k

P S k P S k P k P S Sλ λ

=

=∑
 

Left-hand-side term is iteratively estimated with 1 2( , )k kλ λ  and then optimal 1 2( , )k kλ λ   is kept when the 
difference from P(S1,S2) falls in the threshold.  Obtained redundancy weights are category dependent, 

1 2( , )k kλ λ , k = 1,2.  

Method 2 

In the method 2, data redundancy weights are estimated using primary samples and optimality criterion 
which is to minimize the square errors.  We know the true probability of lithology k= 1(sand) at the primary 
sample location where true lithology is  k=1 is exactly 1.  Probability of the lithology (k=1) conditioned to 
all secondary variables, therefore, should be close to 1 and 1 2( , )k kλ λ  are estimated to minimize the 

difference between true probability and approximated probability with 1 2( , )k kλ λ .  Figure-1 illustrates 
simple example of exact probability at data locations. 

At well-1 location, 

At well-2 location, 

At well-3 location, 

At well-4 location, 
well-4

well-3

well-1

well-2

( 2) 1trueP k = =

sand (k = 1)

shale (k = 2)

( 1) 1trueP k = =

( 1) 1trueP k = =

( 2) 1trueP k = =

 
Figure-1: Simple example for explaining method 1. 

 

Estimated probability of lithology k=1(sand) at well-2 and -4 should be close or equal to 1.0 since lithology 
at well-2 and -4 is sampled as k=1(sand). 
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1 1
1 2

1 2

1 2
1 2

( 1 | ( ), ( )) 1.0
1    ( ( ) | 1) ( ( ) | 1) ( 1)

( ( ), ( ))
k k

P k S S

P S k P S k P k
P S S

λ λ= =

= =

= = =

u u

u u
u u

�
 (1) 

,where location u represents well-2(u2) and well-4(u4) location. 

As a same way, estimated probability of lithology k=2(shale) at well-1 and -3 locations should be close or 
equal to 1.0.   

 

2 2
1 2

1 2

1 2
1 2

( 2 | ( ), ( )) 1.0
1   ( ( ) | 2) ( ( ) | 2) ( 2)

( ( ), ( ))
k k

P k S S

P S k P S k P k
P S S

λ λ= =

= =

= = =

u u

u u
u u

�
 (2) 

,where location u includes well-1(u1) and well-3(u3) location. 

S1(u) and S2(u) are secondary attributes at sample location u.  To estimate ( 1 1
1 2,k kλ λ= = ), equation (1) is 

built as log-linear form by taking logarithm for both sides then,  

( ) ( )
( ) ( )

1 2 2 2
1

1 2 2 2 1
1

1 4 1 4 2 1 4 2 4

( (u ), (u ))log
( 1)log ( (u ) | 1 log ( (u ) | 1

log ( (u ) | 1 log ( (u ) | 1 ( (u ), (u ))log
( 1)

k

k

P S S
P kP S k P S k

P S k P S k P S S
P k

λ
λ

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟== =⎛ ⎞⎛ ⎞ ⎝ ⎠⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎛ ⎞⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟=⎝ ⎠⎝ ⎠  

The first two lines in the matrix involve exactitude of probability at well-2 and -4.  The above matrix form 
is shown as matrix, 

=L λ Di  
One way to solve the matrix equation is least square solution which is 

2arg min
=

= −
λ

L λ D
λ L λ D
i

& i &
 

Thus, lamda for lithology k=1 is 1 1( )k T T= −=λ L L L D . 

To estimate ( 2 2
1 2,k kλ λ= = ), equation (2) is taken by logarithm as well, 

( ) ( )
( ) ( )

1 1 2 3
2

1 1 2 1 1
2

1 3 1 3 2 1 1 2 3

( (u ), (u ))log
( 2)log ( (u ) | 2 log ( (u ) | 2

log ( (u ) | 2 log ( (u ) | 2 ( (u ), (u ))log
( 2)

k

k

P S S
P kP S k P S k

P S k P S k P S S
P k

λ
λ

=

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟== =⎛ ⎞⎛ ⎞ ⎝ ⎠⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎛ ⎞⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟=⎝ ⎠⎝ ⎠  

Lamda weights for lithology k=2 is calculated using least square solution, 
2 1( )k T T= −=λ L L L D  

Synthetic Examples 

Synthetic test data is applied to evaluate the considered methods.  We generated two secondary data sets 
that have 100 × 100 exhaustively sampled values.  Different correlation between secondary 1 and 
secondary 2 is tested; high linear correlation, low linear correlation and non-linear correlation.  In this test, 
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primary indicator information is not integrated because our objective is to evaluate the discussed 
methodologies combining secondary data sets.  The integrated results are evaluated based on quantitative 
goodness measure; closeness to true lithology and entropy.  Closeness to true value is summarized by: 

Ck = E{P(uα;k)| true = k}, k = 1,2  

The closeness measures Ck, k = 1,2 are easily interpreted relative to the global proportions P(k), k = 1,2 i.e., 

( ) , 1,2
( )

rel k
k

C P kC k
P k
−

= =
 

Classically defined Shannon entropy is used as another measure of goodness: 

2
* *
' '

'

ln( ) | true , 1,2k k k
k

S E P P k k⎧ ⎫
= − = =⎨ ⎬

⎩ ⎭
∑

 

where *
'kP  is integrated probability of lithology k’. 

Entropy measure can be interpreted as the uncertainty of the predicted probability.  The entropy would be 
0.0 in the ideal case of complete information. 

Figure-2 illustrates correlation between synthetic secondary 1 and secondary 2 data sets.  Scatter plot of 
exhaustive data shows high linear correlation above 0.95.  700 secondary data is extracted from 10000 
(100×100 image) data values and they are set to indicate lithology 1.  600 secondary data is extracted from 
10000 data values and they are set to indicate lithology 2.  Thus, we prepared global proportion of lithology 
1 is 700/(700+600)=0.54 and global proportion of lithology 2 is 600/(700+600)=0.46.  Right scatter plot of 
Figure-2 represents the correlation between extracted secondary 1 and secondary 2 corresponding to the 
lithology types.  Low values in secondary data are closely related to lithology 1 and high values in 
secondary data sets closely related to lithology 2.  We set secondary data to be highly redundant each other. 

First of all, conditional probabilities given secondary 1 and secondary 2, P(k|S1) and P(k|S2), are calibrated 
separately.  This calibration was performed using histogram smoothing technique.  Probability maps are 
shown in the upper part in Figure-3 and calibrated probabilities looks similar each other since secondary 1 
and secondary 2 data sets are highly correlated.  Integrated probability maps are shown in the lower part in 
Figure-3 with the measurement of closeness and entropy.  In lamda-model, two approaches to estimate  λ 
weights are applied.  In tau-model, τ weights are extracted from the linear correlation between secondary 1 
and 2, τ = 1.0 – 0.939 for lithology 1 and τ = 1.0 – 0.959 for lithology 2.  Permanence of ratios model 
produced the worst result and lamda-model provides the best integrated result in terms of quantified 
goodness.  Integrated result using tau-model shows smaller closeness and larger entropy than the result 
using lamda-model.  However, tau-model shows much better performance than PR-model (158% 
improvement in closeness and 83% improvement in entropy) just as considering linear correlation between 
secondary data sets.  

Secondly, low correlated secondary data sets are tested.  Figure-4 represents low correlation between 
synthetic secondary 1 and 2.  In this second example, we prepared two secondary data sets which show 
little redundancy.  Integrated results are shown in the Figure-4.  Although PR-model has the worst result 
and lamda-model has the best integrated result, one cannot notice significant improvements among three 
integrated results in terms of goodness measure. 

Another example is the case of nonlinear relations between secondary data as shown in Figure-6.  Scatter 
plot between exhaustive secondary 1 and 2 shows non-linear relations.  Extracted secondary 1 and 2 
samples corresponding to lithology 1 and 2 has non-linear relations as well.  For the lithology 1, linear 
correlation between secondary 1 and 2 is 0.239 and for the lithology 2, linear correlation between 1 and 2 is 
0.659.  These linear correlations are used in the tau-model to estimate τ weights.  Integrated results are 
shown in the Figure-7 and closeness and entropy are quantified.  Tau-model does not show better 
performance than PR-model even though tau-model considered redundancy weight τ.  Lamda-model gives 
us the best integrated results in the case of non-linear secondary data relations. 
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Discussions and Conclusions 

Bayesian theorem with Markov-type screening assumption allows a local posterior probability to be 
decomposed into the product of prior and likelihood distribution.  This paper focuses on how to obtain 
likelihood distribution because it is not easy to estimate likelihood unless all secondary variables follow 
jointly Gaussian distributions.  We interpreted the estimation of likelihood as the combination of single 
conditional probability through the plausible integration model.  Permanence of ratios and tau-model are 
introduced as the plausible integration model.  Lamda-model is proposed as a new integration model and 
compared with PR and tau-model.  Synthetic test data is applied for the evaluation and we observed 
choosing the appropriate redundancy weights have a great impact on the integrated results.  In terms of 
quantitative goodness measures, lamda-model is the best integration model.  
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Figure-2: Correlation between secondary 1 and secondary 2 synthetic data (left) and correlation between 
sampled secondary 1 and secondary 2 (right).  Sampled secondary values are colored according to lithology 
type (• lithology 1 ο lithology 2). 
 
 

 
Figure-3: Integrated probability of lithology 1 using permanence of ratios, tau-model, and lamda-model 
with method 1 and method 2.  Three integrated methods are evaluated by closeness and entropy as shown 
in the bottom of the maps.  Closeness and entropy are average values over lithology 1 and 2. 
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Figure-4: Correlation between secondary 1 and secondary 2 synthetic data (left) and correlation between 
sampled secondary 1 and secondary 2 (right).  Sampled secondary values are colored according to lithology 
type (•: lithology 1, ο: lithology 2). 

 
 

 
Figure-5: Integrated probability of lithology 1 using permanence of ratios, tau-model, and lamda-model 
with method 1 and method 2.  Three integrated methods are evaluated by closeness and entropy as shown 
in the bottom of the maps.  Closeness and entropy are average values over lithology 1 and 2. 
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Figure-6: Correlation between secondary 1 and secondary 2 synthetic data (left) and correlation between 
sampled secondary 1 and secondary 2 (right).  Sampled secondary values are colored according to lithology 
type (•: lithology 1, ο: lithology 2). 

 
 

 
Figure-7: Integrated probability of lithology 1 using permanence of ratios, tau-model, and lamda-model 
with method 1 and method 2.  Three integrated methods are evaluated by closeness and entropy as shown 
in the bottom of the maps.  Closeness and entropy are average values over lithology 1 and 2. 
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Appendix 

Conditional probability P(k|S1,S2) is shown below using permanence of ratios approximation. 
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Bayesian relations make the following, 
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Thus, the estimated probability P(k|S1,S2) using permanence of ratios is summarized as, 
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For m secondary variables, the conditional probability given all secondary variables is 
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Now, let us derive P(k|S1,S2) using conditional independence assumption. 

Conditional independence assumption enables us to decompose P(k|S1,S2) into 

1 2 1 2
1 2

1 2 1 2

( , | ) ( ) ( | ) ( | ) ( )( | , )
( , ) ( , )

P S S k P k P S k P S k P kP k S S
P S S P S S

= =
 

Let us denote 1/P(S1,S2) as constant unknown term C that is independent of lithology type k then we have, 
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Also, probability  1 2( | , )P k S S is obtained by conditional independence, 
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Unknown constant term C is the same when estimating both 1 2( | , )P k S S and 1 2( | , )P k S S .  The basic 

probability property that sum of 1 2( | , )P k S S  and 1 2( | , )P k S S  is equal to 1 gives us, 
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Finally, substitute C term into 1 2( | ) ( | ) ( )P S k P S k P k C then we have, 
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For m multiple secondary variables, the probability 1( | ,..., )mP k S S  and 1( | ,..., )mP k S S can be shown 
as, 
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Substitute C’ into equation 1 1( | ,..., ) ( ) ( | ) ( | ) 'm mP k S S P k P S k P S k C= "  then we have 
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Therefore, PPR(k|S1,…,Sm) is equivalent to PCI(k|S1,…,Sm). 


